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TRACKING ON INTENSITY-MODULATED DATA STREAMS 

1.    INTRODUCTION 

The theoretical methodology of probabilistic multi-hypothesis tracking (PMHT) [1] is 
extended to tracking one or more targets moving against a noisy background in an intensity- 
modulated, nonstationary data stream. The algorithm is called herein the histogram-PMHT 
algorithm because its derivation depends in a crucial way on a synthetic histogram interpre- 
tation of the measured data. The goal is to derive a multi-target tracking algorithm that 
utilizes all the data available to the sensor display, thereby completely avoiding the current 
widespread practice of thresholding the sensor data (e.g., peak picking) to generate point 
"measurements" that are subsequently fed to a tracker. Preprocessing the sensor data in 
this way results in a loss of information that may significantly increase the number of lost 
tracks and the tracking error in some applications. The fundamental premise of this report 
is that thresholding loss can be eliminated if the entire sensor output data set is properly 
utilized by the tracking algorithm. The histogram-PMHT algorithm derived in this report 
uses all the sensor output data. 

Nonstationary, intensity-modulated data streams arise in many applications. A common- 
place one-dimensional application is a waterfall (or similar) display of short-term, magnitude- 
squared, Fourier transform data versus frequency. For passive directional arrays, another 
one-dimensional application is a waterfall display of received broadband power as a function 
of bearing. A two-dimensional application to directional arrays is the sequence of intensity- 
modulated bearing-frequency images that arises if short-term spectra are computed on the 
arrays' directional beam outputs. 

The development in this report is general in that sensor data of any dimensionality are 
treated, and the general version of PMHT [1] is utilized. It is shown that the histogram- 
PMHT algorithm is an iteratively reweighted Kaiman filter for traditional single-scan up- 
dates. For batch data, the histogram-PMHT algorithm is an iteratively reweighted Kaiman 
smoothing filter. Because histogram-PMHT uses a richer data set than PMHT, it requires 
more overhead (i.e., computer resources) than PMHT to compute the iteratively re-estimated 
synthetic measurements used in the algorithm; however, the computational complexity of 
the histogram-PMHT algorithm is otherwise equivalent to that of the PMHT algorithm. 

An important theoretical aspect of the work is the unorthodox way in which a Bayesian 
a priori density on target state is added to the model. The usual approach fails in this 
problem because an intermediate measurement quantization procedure creates an infinite 
amount of synthetic histogram data (in the limit as the quantization level goes to zero), 
and this quantity of data overwhelms the usual prior density. The "trick" used here is to 
apply an a priori density to each point in the synthetically generated histogram, so that 



the overall a priori density is properly "balanced" against the histogram data at every 
level of quantization. Using this data-dependent Bayesian density, the quantization step 
can be completely eliminated via a limiting argument. Consequently, the histogram-PMHT 
algorithm uses intensity-modulated sensor data and not synthetic histogram data. 

Luginbuhl was the first to suggest the joint application of histogram and mixture modeling 
methodologies to intensity-modulated displays. In his Ph. D. thesis [2], he applied them 
to the problem of estimating a general, discrete-time, frequency-modulated process using a 
one-dimensional waterfall display of unaveraged, short-term, Fourier transform data. His 
methodology draws on several sources of earlier work. The fundamental idea of applying 
the method of expectation-maximization (EM) to histogram data is due to Dempster, Laird, 
and Rubin in their original EM paper [3]. Dempster and Rubin [4] used the EM method to 
derive Shepard's corrections for one-dimensional histogram data. McLachlan and Jones [5] 
and Jones and McLachlan [6,7] were the first to apply the EM method to estimate Gaussian 
mixtures from one-dimensional histogram data. Among these references [2-7], only Luginbuhl 
considered the important problem of linking successive histograms using a dynamical model. 

This report is organized around the discussion of the fixed batch length problem, that is, 
when all the data from the initial to the current scan are processed jointly by the histogram- 
PMHT algorithm. The recursive problem, in which the batch is a fixed length time window 
that slides over a data stream, is discussed only after the intricate theoretical details are 
ironed out for the fixed batch problem. Throughout the report specific parameterizations 
are not introduced until they are needed. This approach not only minimizes the rather 
extensive notational difficulties that are common to algorithms developed by the method of 
EM, but it also clarifies the theoretical development. 

Section 2 formulates the incomplete data likelihood function using the synthetic his- 
togram point of view. Section 3 formulates the complete data likelihood function using three 
progressive stages of missing data. Section 4 evaluates the E-step, that is, the conditional 
expectation of the logarithm of the complete data likelihood function with respect to the 
missing data. This section discusses the data-dependent a priori density, and it also shows 
how to eliminate the synthetic histogram by taking the limit as the quantization level goes 
to zero. Section 5 gives the auxiliary function in a separable form suited to the multi-target 
application. Section 6 evaluates the M-step; that, is, it solves for parameters that maximize 
the auxiliary function evaluated in the E-step. Section 7 is especially important because it 
states the histogram-PMHT algorithm for the fixed and recursive batch problems in a form 
suitable for implementation. Section 8 discusses modifications that can be incorporated into 
the algorithm and that may have utility for some applications. A summary is given in section 
9. 



2.    INCOMPLETE DATA LIKELIHOOD FUNCTION 

Let C = {Ci,...,Cs}, S > 1, denote the collection of all possible sensor cells. It is 
assumed that d C\Cj = 4> for all i and j and that Cx U ... U Cs = Rdim(-C\ where dim(C) 
denotes the dimension of the sensor space. The shape of a sensor cell may be very general; 
in fact, it need not even be connected (e.g., a cell may be the union of disjoint subintervals). 
The cells C are intrinsically fixed; however, those cells in which measurements are collected 
and displayed may vary from scan to scan. The sensor display at time t is denoted B(t) = 
{Bi(t),...,'BL(t)(t)} C C, where 1 < L(t) < S. The other measurement cells Bc(t) = 
{BL(t)+i{t),...,Bs{t)} = C \ B(t) are not displayed and are said to be truncated. It is 
assumed that no measurement data are collected for cells in Bc(t). 

Let T > 1 denote the number of scans in a batch of measurements. The usual formulation 
for a recursive filter corresponds to the special case T = 1. Denote the sensor measurement 
vector at time t by 

Zt = {zti,---,ztjL(t)},        t=l,...,T, (1) 

where ztt is the magnitude-squared output of the sensor at time t in the displayed cell 
Bi{t). Two kinds of variation must be modeled, one systematic and the other statistical. 
The systematic cell-to-cell variation of the measurement vector Zt is parameterized using 
the PMHT multi-target model; that is, the unknown cell-to-cell variation is assumed to 
be proportional to a mixture density. In the PMHT approach, a target is either a single 
component in the mixture or a group of appropriately coupled components. A model of the 
statistical variation, or probability density function (PDF), of the individual measurement zu 
must also be provided. The procedure adopted here is to quantize the data vector Zt into a 
"pseudo-histogram," and then use a multinomial distribution to model the cell counts in the 
histogram. The expected cell counts are derived via the PMHT target mixture model. The 
appropriateness of these models must be verified on a case-by-case basis in the application. 

Let h2 > 0 be a specified quantization level, and let 

Nt = {ntl,...,nt,L(t)},        t = l,...,T, (2) 

denote the quantized vector corresponding to Zt, where 

zu 
nu 

ti 
(3) 

and [x\ denotes the greatest integer less than or equal to x. The use of the quantized vector 
Nt instead of the measurement vector Zt is an intermediate step in the development. In 
the sequel, after deriving the auxiliary function of the histogram-PMHT algorithm using the 
quantized vectors Nt, the measurement vectors Zt will be recovered in the limit as k2 —* 0. 
Let 

L(t) 

Ntx = J2 nti (4) 
£=l 



denote the total count, or sample size, at time t. 

It is assumed that the vector Nt has a multinomial distribution consisting of iVtS inde- 
pendent draws (with replacement) on L(t) "categories" with probabilities 

(5) 
pe(Xt) 
p{xty    «-1—.M*). 

where, for all cells, 

Pi(Xt)= f     f(r;Xt)dr,        £ = 
JBe(t) 

and 

L(t) 

p{Xt) = Y, wo, 

(6) 

(7) 
i=i 

where f{r;Xt) denotes a "sample" PDF defined over all r e Rdim(c\ and where the vector 
Xt denotes the parameter vector of the sample PDF at time t. At the moment, Xt is not a 
random variable. In the sequel, f(r;Xt) will be taken to be a Gaussian mixture in which, 
just as in PMHT, the mixture components correspond to targets. 

The assumption of a multinomial density for the quantized data vector Nt is a nontrivial 
assumption. It is equivalent to the statement that the sample counts Nt = {ntl, ...,ntii(t)} 
form a histogram with cells Bx(t),..., BL{t) (t) with a sample size of JVffi, where the samples are 
independent and identically distributed (IID) with the PDF f(r;Xt)/P{Xt). Because Nt is 
generated via a synthetically imposed quantization procedure, the samples are not IID. The 
histogram model assumes, therefore, that more information is available than the measured 
data Zt can possibly possess. The synthetic histogram data also cause difficulty when a 
Bayesian model for the parameters Xt is adopted because the abundance of synthetically 
generated, but supposedly IID, samples overwhelms the usual prior density. This mismatch 
is solved (see section 3.3 below) by choosing a sufficiently uninformative prior density to 
compensate for using a too informative likelihood function for the synthetic histogram data 
(i.e., the multinomial PDF). 

Let N — {Ni,...,NT} denote the collection of quantized measurement vectors, and let 
X = {Xi,...,XT}. Then, assuming that the vectors making up N are independent, the 
so-called incomplete data PDF of N is given by 

T 

Pinc(N; X) = H pinc(Nt; Xt), (8) 
t=i 



where 

Pinc{Nt;Xt) = — j- [I 

L(t) 

(9) 
J°TO 

The incomplete data likelihood function of X is obtained from (8) by substituting an appro- 
priate, application-dependent, parametric form for the sample density f(r;Xt) into (9). 

Ifps(X) denotes the a priori density of X, then the incomplete data likelihood function 
is given by 

Pinc(N,X)=ps(X)pinc(N\X), (10) 

where the density pinc(N\X) is essentially identical to (8), the only difference being its 
statistical interpretation. A Bayesian prior density for the parameter X is developed in the 
next section (cf. equation (29)), and it must be included in the incomplete data density 
when the Bayesian viewpoint is adopted. 

5/(6 blank) 



3.    COMPLETE DATA LIKELIHOOD FUNCTION 

3.1    UNOBSERVED CELL COUNTS AS MISSING DATA 

Missing data are introduced in three progressive stages, with the Bayesian prior density 
on the parameters X being introduced at the end of the second stage. A suitable version 
of the general treatment of Dempster, Laird, and Rubin [3, Section 4.2] is followed initially; 
later, after mixture models are incorporated into the problem, the more detailed structure 
of McLachlan and Jones [5] is followed. For a general, up-to-date discussion of the method 
of EM and its variants, see McLachlan and Krishnan [8]. 

In the first stage, missing random variables are used to model the counts in the unob- 
served, or truncated, cells in Bc{t). For t = L(t) + 1,..., S, let nu denote the missing count for 
cell Be(t). It is assumed that the missing counts are distributed as a negative multinomial. 
(See Johnson et al. [9, chapter 36] for a general description of the negative multinomial and 
related discrete PDFs.) Letting 

N? = -Ot,L(t)+i, • • • , nt,s}, (11) 

and 
s 

Nh=   E   n«' (12) 
e=L(t)+i 

the negative multinomial PDF on N£ is given by 

(JVffl + JVk-1)! 
—p^l^J Pw\Nt;xt) = -—(^+fs,^)! ^[pmr* n [^TOP-   (13) 

It is sufficient in (13) to condition only on the total count JVt2 instead of Nt; however, this 
notation is convenient for the present purpose. Because p(N£\Nt; Xt) is a PDF, 

OO 00 

.  J2p(Nt\Nf,Xt)=     Yl     ■■■ E   PW\Nt;Xt) = l. (14) 
N? ntMt)+1=Q        nt,s=0 

The conditional mean value of the missing cell count nte is given by 
00 00 OO 

E nu p{Nt\Nt- Xt)   =       ]T     ■ • ■ E * •' E   "* PWWf, Xt) 
N£ n*,L(t)+i=0        nu=0       "t,S=0 

=   JVffi^^,        L(t) + l<t<S, (15) 

an intuitively reasonable result. Expression (15) is derived by substituting (13), canceling 
nu in the n#! term, and adjusting the remaining parameters in a straightforward way so 
that definition (13) can be re-invoked. 



A model of the negative multinomial distribution in terms of realizations of a (stationary) 
Bernoulli trial sequence may provide an insightful and physically meaningful interpretation 
for some applications. Each trial in the sequence has S possible outcomes, one correspond- 
ing to each cell in C. As the sequence progresses, a running count of the total number 
of occurrences of each outcome is recorded, and the sequence stops when a total of Na 

outcomes is obtained in the set of observed cells {Bi(t),...,BL^(t)}. Upon stopping the 
trial sequence, counts Nt

c = {ntjL(t)+1, ...,ntjS} have been obtained in the unobserved cells 
Bi,(t)+i(t), ...,Bs(t). The probability of these counts is given by (13). 

Let Nc = {N£,..., JV£} denote the collection of missing measurement count vectors. Using 
independence of the count vectors in Nc and Bayes Theorem gives the complete data PDF 
at the end of the first stage as 

PSm(N,Nc;X)   =   l[p$m(Nt,Nt
c;Xt) 

t=i 
T 

=   T[pinc(Nt;Xt)p(Nt
c\Nt;Xt). 

4=1 

Substituting (9) and (13), using definitions (4) and (12), and simplifying the resulting ex- 
pression gives 

AW ^ x)=n 7t n [Pi(Xt)}nu, (i6) 
t=i     e=i 

where 

nt,i
]. ••• ntMt)\       nttL{t)+1\ ■■■ ntiSl (Nts -1)!' (17^ 

It is clear from (16) that the negative multinomial cancels denominator terms of the form 
P{Xt) in the multinomial PDF. 

3.2    SAMPLE LOCATIONS AS MISSING DATA 

In the second stage, missing random variables are used to represent the location of the 
unobserved samples in all S cells. There are nu samples at time t in cell B£(t), so let 

Ctt = {C«i, • • •, Ctenu } C Bi(t) (18) 

denote the locations of the samples within cell Bt(t). The random variables in C« are assumed 
to be IID with PDF f(z; Xt)/Pe(Xt), and their domain is restricted to Be(t). Let 

Ct = {Ctl> ■■;Cts}, 



and 

C = {Ci,-,Cr}. 

The complete data PDF for the second stage is defined to be 

T S    nti 

p<3m(N, NC, c; x)=n -r* n n /^ xt). ^ 
t-l £=i r=l 

The marginal density of (19) over £ is easily seen to be identical to (16), so definition (19) 
is compatible with the existing statistical structure. 

3.3    DATA-DEPENDENT BAYESIAN MODEL FOR X 

Before continuing to the third stage of adding missing data, a Bayesian model is adopted 
for the parameter vector X. Following the usual approach, let 

E = {—0,^.1, ••-,^r} 

denote the sequence of multi-target state vectors, or random variables, and let 

X = {X0,Xi, ...,XT} 

denote a realization of the state sequence E. The additional state vector Ho is used to model 
the a priori variable of Hi. Under a Markov assumption for H, Bayes Theorem gives 

T 

Ps(X) =pEo(Xo)H ps^OW-x), (20) 
t=i 

where ps0(X0) is the density of H0. Applied to the complete data PDF (19), this approach 
yields the joint density 

&(X,N,Nc, C) = ps(X) pgl(N, Nc, C\X). (21) 

The conditional density in (21) is obtained from (19) in the usual way by interpreting para- 
metric dependence as Bayesian conditioning. 

Formulation (21) has the surprising consequence that the a priori density Ps(X) has 
no influence on the parameter estimates as iVt2 —> oo or, equivalently, as the arbitrary 
quantization scale factor Ti2 —> 0. The reason is that data counts in the histogram become 
infinite as h2 —>• 0 and, consequently, the synthetically induced abundance of data overwhelms 
the a priori density. Since the information in the original sensor measurement vectors Zt is 
independent of the degree of quantization, the traditional approach is not the appropriate 
way to pose a Bayesian model for the complete data PDF (19). 

9 



An alternative Bayesian formulation is adopted here:   In this approach, the Bayesian 
prior density is applied to each event that generates a count in a cell. The pairs in the set 

fit = Uf=1 {(&&., &r) :     r = 1,..., nu} (22) 

are assumed to be IID samples of a joint PDF conditioned on the state realization E*_i = 
Xt-i, denoted by p=tTt|st_i(-, -\Xt-i), where Tt is the location random variable with sample 
value CUr, and Et is the state random variable with sample value £Ur. Applying Bayes 
Theorem and assuming that Tt is independent of Et_i when conditioned on Et, gives 

P2tTt|St-i     =    PSt|S«_i PTt|S42t-i 

=    PSt|St-i PT,|St  • (23) 

Conditional independence of sample pairs in Ck implies that the likelihood function of ftt is 
using (23), 

S    nti 

t=l r=l 

=     UH  P3t\2t-i(tttr\Xt-i) PTtfriCtlAtttr)- (24) 

The Bayesian assumption, as it is applied in (24), is that each measurement C,UT is generated 
from a parameter specific to it, namely £tir; thus, the total number of parameters {&*.} 
equals, or balances, the total number of data points. 

To make maximum a posteriori (MAP) estimation tractable and, more importantly, 
to make the data-specific parameters {&&.} consistent with the parameter sequence X = 
{X0:Xi, ...,XT}, the parameters {&&■} are constrained so that 

£«r = Xt,        for r = 1,..., nu;    £ = l,.... S. (25) 

The constraints (25) apply to realizations of the Bayesian random variable models of the 
parameters, not to the random variables themselves. Substituting the constraints (25) into 
(24) gives the likelihood function of the data Q,t in the form 

5    ntt 

[ps^AXtlX^)]^^   fill p?tlst(U\Xt). (26) 
1=1 r=l 

Finally, the Bayesian version of (19) used here is given by 

T s   nu 

A(X,N1N
c,C)=pE(X) H 7*1111 /(Carl**), (27) 

t=l 1=1r=\ 

10 



where the obvious identification 

PTt\St {(tir \Xt) = f((t£r\Xt) (28) 

has been substituted into (27), and where the data-dependent prior density is 

Ps(X) = PEo(X0) H   [PE^AXtlX^)}"^ . (29) 

ram The exponent of the density ps0(X0) in (29) is unity, given the absence of synthetic histogi  
data at time t = 0. It will be seen that pZo(X0) is eliminated in the limit as the quantization 
scale h  —)• 0. 

The alternative density (29) has as many a priori density factors per scan as there are 
location samples in the synthetic histogram of that scan, in contrast to the usual density 
(20), which has only one such factor per scan. Hence, the data cannot overwhelm the a 
priori density (29) as the quantization scale h2 -» 0. 

3.4    MIXTURE COMPONENT ASSIGNMENTS AS MISSING DATA 

The final stage of missing random variables is required by the particular sample PDF 
considered in this application. The sample PDF is a function of location in the sensor output 
space Rdim(c\ and it is assumed to be the mixture density 

f(r\Xt) = J2 *tk Gk(r\Xt), (30) 
fe=0 

where the mixing proportions irtk > 0 and 

7I"i0 +7Ttl +... + 7TiM = 1, 

and where Gk{T}Xt) is a PDF for all k; i.e., it is nonnegative and its integral over r is equal 
to 1 for all Xt. Specific parametric forms and different subsets of parameters in Xt will 
eventually be identified for each of the M + l components in (30), but doing so at this point 
in the derivation needlessly obscures the discussion. 

A physical interpretation of component 7rt0G0(r\Xt) is that 7rt0 represents the fraction 
of the total power due to the background and G0(r\Xt) models the variation from cell to 
cell of the background level. The remaining components KtiG^rlXt), ...,7rmGM(r\Xt) are 
interpreted as target models in which ntk is the fraction of total power due to target k and 
Gk(r\Xt) models the cell-level variations of target k. The parametric form (30) assumes that 
a target's power level may be spread across more than one cell of the sensor display. The 
parametric form of the spread functions Gk(r\Xt) need not be specified until later. 

11 



A missing variable kUr is used to specify which component of the mixture generated the 
missing variable Cur, so that 0 < kUr < M. It is assumed that kur is a random variable with 
discrete PDF specified by {7rt0,7rti, ...^M}- Hence, if 

Ku = {ktti,:;kana}       for ^ = 1, ...,5 and t = l,...,T, 

then all variables in Ku are IID. Let Kt = {Ktu -, Kts} and K = {Ku ..., KT}. Extending 
the density (27) to include K gives, finally, the complete data PDF at the end of the third 
stage as 

T S    nte 

P<3m(X,N,N<,(,K)=p3(X)ll Ttlin fkuriCM), (31) 
t=l        £=1 r=l 

where 

fk(r\Xt) = 7Ttfc Gk(r\Xt) (32) 

is used in (31). The dependence of fk(r\Xt) on the mixing proportion 7rtfc is implicit in 
the abbreviated notation (32). Summing (31) over all K gives (27) after substitution of 
the mixture (30), so the additional random variables K are compatible with the existing 
structure. 

12 



4.    E-STEP 

4.1    CONDITIONAL EXPECTATION OVER ASSIGNMENTS K 

In the E-step of the EM method, the so-called auxiliary function Qh is evaluated as a 
conditional expectation of the logarithm of the complete data density (31). The required 
expectation is with respect to the missing data {Nc, (, K}, and it is conditioned on N and 
a current value of X, denoted by X'. Explicitly, 

Qn = Es'tK [{logÄ(X, N, Nc, C, K)} | N, X'] , (33) 

where EJ^CK denotes the expectation with respect to the missing data. The conditional 
density of the missing data is obtained by using Bayes Theorem, the complete data density 
(31), and the incomplete data density (10). After algebraic manipulation, the result is 

Pinc(N,X>) 

f[p(N!\NtlXi)f[^f^l^.. 
t=l fclr=l ^    *'' 

(34) 

where p(N£\Nt, X') is the negative multinomial density (13). Substituting (29) and (31) into 
(33), and dropping the terms jt because they do not depend on X, gives 

T 

logpEo(X0)+Y,K%al   \0gPSt\~t-AXt\Xt-!) Qn   —   EN
C 

+ EN
C
^K 

4=1 
T      S     nu 

N,X' 

EEE10«^^™ 
t=l  fcl r=\ 

N,X' (35) 

where 

N&tal = Ntx + N?z, t=l,...,T. 

The second expectation in (35) is evaluated as three nested, conditional expectations: 

Qh = ENc[Ec[EK[{-} \N,X'] ] ]. (36) 

The outermost expectation in (36) and the first expectation in (35) are both with respect to 
iVc. 

The innermost expectation in (36) is, by definition, 

ER   =   E, K N,X' 
T     S    ntt 

EEE log A«, (et* ro 
Lt=l  fel r=l 
{T     S    ntt 

EEE l°Shur(Cur\Xt)\ p(Nc,{,K\N,X>). 
t=l t=l r=l 
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Interchanging the sum over K with the triple sum over {t, £, r}, substituting (34), and then 
pushing the sum over K\ktir further inside the summand gives 

T     s    ntl 

E«   =   EEEE ^h«r((ur\Xt)p(N<,(,K\N,X') 
*=1  1=1  r=l    K 

2^2^2^\ 1^     PJW\— ttttr (Ctfr \xt) log fkttr (Ctfr \xt) 
«=1   t=l  r=l    U«P=0 ^V^J 

\ 

x   £ P(ivc,c, W*0 

It is straightforward to see from (34) that 

K\kttr i=l i=i f=l    ^At' 

(37) 

(38) 

The absence of a subscript on the sample density /(Ct&l-Xj) in (38) is a direct consequence 
of marginalizing over K. This completes the conditional expectation with respect to K. 

4.2    CONDITIONAL EXPECTATION OVER LOCATIONS C 

The conditional expectation of EK with respect to the collection of all sample locations 
C is defined by the multiple integral 

E, = J---JEKdC, (39) 

where there are as many integrals in (39) as there are indices in K. For all indices {t,£,r}, 
the domain of integration of QUr is Be(t). Substituting (37), pushing the multiple integral 
inside the triple sum over {t, £, r}, and then arranging the integrals to match corresponding 
sums over K gives 

ttttkuto  p^ 
X      / fkuACttrlXl)   l0gfkar(Cttr\Xt)d<:Ur 

JBt(t) 

x   /•••/    E   P(NcX,K\N,X')d(C\Cur).\ (40) 
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From (38) and the definition (30), it is seen that 

T 

J.-.J    J2   p(Nc,C,K\N,X')d((\(ur) = i[p(Ni
c\NhXi)- (41) 

C\C«r K\kttT t=l 

Expression (40) is simplified by performing the following steps: (1) substitute (41) into (40); 
(2) change ktlT and £«r to the dummy variables k and r, respectively; (3) make the sum on 
k the outermost sum instead of the innermost; (4) collect terms to eliminate the exception 
in the product and recover the negative multinomial density; and (5) recognize that the 
summand no longer depends on r and so is equivalent to a multiplication. The result is 

k=0 t=l 1=1 ^    *' 1=1 

This completes the conditional expectation with respect to C,. 

4.3    CONDITIONAL EXPECTATION OVER COUNTS Nc 

The auxiliary function Qh is, from (35), the sum of two terms, namely, 

Qh = ENc [\ogpE(X)\N, X'} + ENc [E(], (43) 

where the data-dependent a priori density ps(X) is given by (29) and EQ is given by (42). 
The first term in (43) is a conditional expectation with respect to Nc = {iVf,..., iV£}, where 
iVt

c is given by (11); however, the second term is an unconditional sum over all Nc because 
the required conditioning is implicit in the definition of E$. 

Both terms in (43) require evaluating the quantity n«, where 

T 

nu = ENc[nu\N,X'} = £ n* JJ p(Nf\NhX'{). (44) 
Nc t=l 

The expectation in (44) simplifies in one of two ways. If 1 < I < L(t), then nt£ — rm because 
nt£ is not involved in the sum over iVc, and because 

T ( \ 

if"  1=1 \ JVf / 

Y,pm\NT,x'T) (45) 
NS. 

evaluates to 1, using the PDF identity (14). If, however, L(t) + 1 < £ < S, then 

nu = J] nup{NZ\NuX't) 
N? 

E    f[p(Nf\NitX'{) (46) 
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The term in brackets in (46) equals 1, as is seen by factoring the sum as in (45); therefore, 
from (15), 

\ nu for 1 < I < L(t) 
nt£={^^     forL(t) + l<i<S. (4?) 

Truncated cells are seen from (47) to contribute to Qh in proportion to the expected number 
of measurements in those cells; thus, the negative multinomial PDF is a kind of extrapolation 
procedure to compensate for truncated cells. 

By linearity of the expectation operator, 

ENc[N}gal\Nt,X{\   =   ENC[Ntx + N^\Nt,X't] 

=   Na +Y,Nkf[p(Nf\Ni,Xi) 

S 

e=L(t)+i 

Substituting (47) and using the identity 

P{K)  +    E    PiW)   =   ihptW)   = f f{r\X>) dr  =   1 
e=L(t)+l 1=1 ^Ädim(C) 

gives the result 

E[N%«l\NuX>}=J^. (48) 

The results (47) and (48) enable the computation of (43). 

The first term of (43) is evaluated from (35) using linearity of the conditional expectation 
operator and the limit (48) to obtain 

T 

EN4ogpE(X)\Nt,X3 = logpEo(X0) + £ J^rj logPE^pTtlXt-i). (49) 

The second term of (43) is evaluated from (42) using linearity of the expectation operator 
and substituting (47) to obtain 

M     T      S _ 

ENo[Ec] = XEE  PTITT   /      fk{r\X't) logfk(r\Xt) dr. (50) 
k=o fc=i e=i  n^At) JBt{t) 

The auxiliary function Qh is the sum of (49) and (50). 
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4.4    LIMIT OF Qn AS QUANTIZATION SCALE h2 -+ 0 

It is now shown that the synthetic histogram is eliminated by taking the limit 

Q*=   lim   k2 Qn. 
h2->o 

From the definition (3) of nte, it follows that 

lim   h2 rite. = fim ^2 

7i2->0 ft2-+0 

From (3) and (4) it follows immediately that 

zu 
h2 zu- 

(51) 

(52) 

lim h2 Ntv   =    lim ( 
h2^-o fc2->0 

Lit) 

L(t) 
zu 
h2 

zu Y iim in2   % ) 

= \\Zt\\, 

where ||-|| denotes the so-called Li-norm defined by 

L(t) 

\\Zt\\ = 2_^ zu- 
e=i 

(53) 

(54) 

If zu is magnitude-squared data, then \\Zt\\ is a sum of squares (i.e., it is proportional to 
power). Using (53), it is reasonable to define the expected measurement zte as 

zte   =    lim   hf nu 
h2->o 

zu for 1 < £ < L(t) 

II^HTSD 
for L(t) + i<e<s. 

(55) 

The limit (51) is evaluated term-by-term using expressions (52) and (55).   The quantity 
h2 \ogp30(X0) goes to 0 in the limit, and the final result is 

o' = E wis i°gPE.iB.-.(*.i*-i) 
M     T      S 

+ EEE Tm \   fk{Tlx'i] l0^r^dr- (56) 

This completes the evaluation of the limiting form of the auxiliary function. The limiting 
form C$ uses measured sensor data, not the synthetic histogram data. 
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5.    AUXILIARY FUNCTION FOR HISTOGRAM-PMHT 

Target-specific subsets of the multi-target state and parameter vectors are now identified. 
The multi-target state vector Et is partitioned as 

—t = {"«b^tij —,ZHM} J        t = 0,1, ...,T, 

where Etk is the state of target k at time t. The corresponding target parameters are given 
by 

Xt — {xtoiXti,...,xtM},       t = 0,1,...,T, 

where xtQ is the parameter of the background density at time t, and xtk is the parameter of 
target A; at time t. There is no need to specify a parametric form for ps0 (X0) because it is 
absent from Q". Assuming that targets and background are independent at all times, 

M 

PEtfr-AXtlXt-i) = Yl PEtfc|Se_M(Ztt|Zt-l,*)- 
fc=0 

The abbreviated notation in (32) rewritten in single target style becomes 

fk(r\Xt) =7rtfc Gk(r\xtk). 

Mixing proportions and target parameters are to be estimated. 

(57) 

(58) 

Let x'tk and -K*tk denote current values of the target parameters and mixing proportions, 
respectively. Substituting (57) and (58) into (56) gives 

M 

Qt = ^tQtr + ^2QkX, (59) 
fc=l k=0 

where 

M 

Qt, = Yl 
k=0 

' s      -■      r 

5Z jrfw\ \    Gk^\x'^ dr 
J^l    ^i\At) JBt(t) 

^fciogTTtfc (60) 

and 

\\Z II 

t=l F^xt> 
T      S 

EE Tfifc ztl 

t^ij^ Pt{x't) jBt(t) 

where \\Zt\\ and za are given by (54) and (55), respectively. 

Gk(r\x'tk) logGk{r\xtk) dr, (61) 
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The auxiliary function (59) holds for general parametric forms of the Markovian densities 
Pz.t\=.t-A

xtk\xt-\,k)- It also holds for general parametric forms of both the target densities 
Gk{i~\xtk), k>l, and the background density Go{r\xtk). 

Different parameterizations will typically be used in most applications to model back- 
ground structure and target behavior. For example, if the background model does not use a 
state process model, and it is stationary, so that xt0 = x0 for all t, then the contribution in 
(61) for the background term k = 0 becomes simply 

T    s 
Qox = EE FTlpT   /     G°^x'^ 1O

%
G

°(T\*O) dr. (62) 

Estimates of the stationary background parameter x0 and the target parameters would then 
be derived from (62) and QkX,l<k<M. Alternatively, if the background is not estimated 
because it is already normalized in some application-specific manner, then the term Qox is 
omitted from Qa altogether. 
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M-STEP 

6.1    MIXING PROPORTIONS: GENERAL CASE 

An expression for updated mixing proportions is derived from the general expression 
(60). There is no need to specify particular parametric forms for the target and background 
densities Gk{r\x'tk). The update, denoted by 9tk, is derived by maximizing (60) subject to 
the natural constraint on the sum of the n^'s. The appropriate Lagrangian function is 

M 

E 
fc=0 

s       _        r 

h PiW) JBeit) 
Gk(r\x'tk) dr 

M 

n'tk logTTtfc + At I  1 - 53 7Ttt 

fc=0 

where At is the Lagrange multiplier. Differentiating with respect to 7rifc and solving for ntk 

gives the update 

TT; 
^tk 

tk 

xt 

s      _        r v^    Zu    / Gk(r\x'tk) dr (63) 

Summing (63) over all k and invoking the equality constraint gives the Lagrange multiplier 
as 

M 

X, Y^n'tk 
k=0 

s      _        r 

h p^x't) ha) 
Gk{r\x'tk) dr (64) 

Substituting (64) into (63) gives the updated estimate Tftk. 

Additional linear constraints are easily imposed on the method. For example, it may be 
desirable to require the mixing proportions to be stationary; that is, 7ctk = itk for all t. The 
resulting estimator requires summing over £ and t and adjusting the normalization factor 
accordingly. Such constraints are application-dependent and are not pursued here. 

6.2    STATE ESTIMATES FOR LINEAR GAUSS-MARKOV CASE 

Parameterizations appropriate for the special case of linear Gauss-Markov target pro- 
cesses, linear measurement models, and known background are assumed in this section. The 
measurement and target covariance matrices {Rtk} and {Qtk} are assumed known through- 
out this section. The case of unknown covariance matrices is treated in the following section. 

For k = 1,..., M and t = 1, ...,T, the target process models are 

Pztk\st^k(xtk\xt-i,k) = N{xtk; Ft-i,kxt-i,k, Qt-i,k), 

and the measurement models are 

Gk(r\xtk) = N(T; Htkxtk, Rtk), 

(65) 

(66) 
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where N(T; /J,, E) denotes the multivariate Gaussian PDF with mean vector p and covariance 
matrix E. The background density is assumed to be completely known for all t; that is, 

G0(r\xt0) = Go(r;xto), (67) 

where xt0 are known constants. Consequently, Qox is omitted from QK 

For A; > 1, substituting these forms into QkX and dropping determinant terms, since 
they do not depend on {xtk}, shows that -2QkX is a discrete-continuous sum of weighted, 
squared errors. Explicitly, the total squared error is given by 

T    \\Z II 
-2 Qkx   =   Yl ~pUC) ^Xtk ~ F*-1.*x*-i.*)* Qt-i,k (xtk ~ Ft-ifiXt-w) 

+ EE Tm   I    N^ #*4> R*) 
t=l fci    WXt)    Jj3t(t) 

x  (r - Htkxtk)* R;k
x (r - Htkxtk) dr, (68) 

where asterisks denote vector and matrix transpose. Let 

X(k) = {x0k,xlk,...,xTk}. 

Using the general gradient identity 

Vs {Fx - AO* E"1 (FX -fi) = 2F* E"1 (Fx - //) 

to take the gradient of the total squared error with respect to each of the vectors in X(k) 
gives the necessary conditions for minimizing -2QkX. It is assumed that this linear system 
of equations is full rank, so that the necessary conditions are sufficient also in this case. 

The linear system takes the form TkX(k) = bk, where Tk is a symmetric and block 
tridiagonal matrix of size (T + 1) x (T + 1) blocks and the right-hand side is a compatibly 
partitioned vector. After algebraic manipulation, the system matrix Tk is given explicitly as 

D 
-B{ 

0 
0 

'Ok. 
i* 

'Ok 

—Bok 0 
A\k + Dik   —Blk 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

-B, 'T-2,k 
0 

A-T-\,k + Dr-i,k   —Br-i,k 
ATk 

nT-l,k 

where the block matrices Atk, Dtk, and Btk are given by 

Atk = (Qt-i,k) 

Dtk = F?h  (QtkJ 

H, tk 
-1 

[Rtkj H, tk 

"tk 

B 
~  \ -l 

'tk - Ftk [QtkJ 

for  1 < t < T, 

for  0 < t < T - 1, 

for  0 < t < T - 1, 

(69) 
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and the synthetic target and measurement covariances used in (69) are 

Qtk — Qtk   for o<*<r-i, 
>t+l 

and 

Rtk — 
R ■tk 

^tk ytk 
for  1 < t < T, 

(70) 

(71) 

where 

Vtk = E -ßrk I   N^ HtkX'^ Rtk) dT- jr( Fi\.xt) JBt{t) 
(72) 

The right-hand side of the system is a vector that, partitioned into T +1 blocks, is given by 

0 

H*u   (R\k)        Zlk 

bk = 
lik 

B Tk (RTk) 
-i 

ZTk 

(73) 

where the synthetic measurements used in (73) are given by 

Ztk = — E j£k I    T N^ HtkX'^ Ri^dT- "tk ~ Pt{X't) jBt{t) 

(74) 

The solution of the linear system TkX(k) = bk gives updated state estimates, denoted by 
X(k) = {x0k, xik,—, %Tk}- It can be solved using an appropriate form of Gaussian elimination 
for symmetric, block tridiagonal matrices. 

Alternatively, expressions (69) and (73) are in precisely the form needed to show that a 
nonstationary Kaiman smoothing filter with a diffuse prior PDF for the state at time t = 1 
can also compute the same state estimates. This numerical equivalence is seen from the 
expression 

exp(Qfcx) oc JJjV(xrt; Ft-i,*^-!,*, Qt-i,k) N(ztk; Htkxtk, Rtk), (75) 
t=i 

a result obtained from Qkx by algebraically completing the squares on the variables in X(k). 
Maximizing (75) over X(k) = {x0k, Xik,...,xTk} is equivalent to minimizing the total squared 
error (68) over the same quantities, i.e., equivalent to solving the system TkX(k) = bk. An 
important feature of the equivalent smoothing filter is that it uses synthetic measurements 
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(74) and synthetic covariance matrices (70)-(71), not the given measurements {zu} and 
originally specified covariances {Qtk} and {Rtk}- 

The synthetic measurements ztk form a probabilistic centroid over the sensor cells C. To 
see this, let 

/ß,mriV(r! Htkx'tk, Rtk) dr 

JBAt) N(T'> Htkx'tk, Rtk) dr K   J 

denote the cell-level centroids for target k at time t. Because zM is the mean of a PDF 
whose support is confined to the cell Be(t), it follows that ztu € Be(t) if B£(t) is a convex 
set. It is easily verified that 

>s 
Efei    p^xi) fst(t) N(r'> Hthx'tki Rtk) dr 

Ztk = 
Ztki 

(77) 
£*=i   [p^q) jBt{t) N{T; Htkx'tk, Rtk) dr 

is equivalent to the definition (74). The synthetic measurement ztk is a convex combination 
of the cell-level centroids {ztki, ...,ztkS} in (77). 

The cell-level centroids (76) may be a convenient point in the calculation to deal with some 
of the numerical dynamic range issues that may arise. For example, in the one-dimensional 
case when cells Be(t) are intervals, it is straightforward to prove the identity 

., _ /> mrif,^) dr _ (N(b;ß,a*)-N(a;ß,^)\ 
t. Nlr-,,,«*)dT-»-a   {      £N(r;^)är      ) ' (78) 

The denominator is a difference of error functions, so evaluating the cell-level centroids 
in the one-dimensional case seems both fast and accurate. However, when the mean // is 
separated from the interval [a, b] by many multiples of a, numerical underflow may cause 
both numerator and denominator of the ratio on the right hand side of (78) to become zero. 
An alternative approach is to show by a change of variables that 

f-A T N(T + c; At» °2) dr 

I-*N(T + cr,p,a*)dT ' 

where [a, b] = [c- A,c+ A]. Expanding numerator and denominator in a Maclaurin series, 
substituting the identity 

>(r; M, a2) = i-Ü! N{T] H a*) Hen (l_£) ,      n = 0,1,2,..., 
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where Hen (•) is the Hermite polynomial of degree n, and canceling the common factor of 
N(T; fj,, a2) gives a standardized (dimensionless) ratio in the form 

Eoo 1 f A\2n   -er /c-M 
n=0 (2n+3)(2n+l)!  \cr) 2"+1 \   cr   J 

2-m=0 (2n+l)(2n)!  \tr)        "e2n {   a   ) 

Rational approximations of desired accuracy are obtained by truncating in the series; how- 
ever, asymptotic approximations are preferable for sufficiently large values of £^i. Approx- 
imations derived by methods such as these may be especially useful in higher dimensional 
applications. 

6.3    COVARIANCE ESTIMATES 

Measurement and target covariance matrices are assumed unknown in this section, and 
an estimation algorithm is derived by the generalized EM (GEM) method. The E-step of 
the GEM method is the same as the E-step of the EM method. Consequently, the mixing 
proportions {7rtfc} are estimated in exactly the same way as discussed earlier. 

The terms in the Q" function not involving mixing proportions constitute a function of 
the form Q*{X, {Qtk}, {Rtk})- The M-step of the GEM method requires solving the problem 

max, Qt(X,{Qtk},{Rtk}). (79) 
X,Q,R 

Unfortunately, the necessary equations obtained by differentiation with respect to the state 
and covariance variables are coupled, so the EM method is difficult to use. By replacing the 
maximization (79) with two nested maximizations 

max {max Q*(X, {Qtk}, {R*})} , (80) 
Q,R     K   X ) 

it is readily verified that the Q function is necessarily increased, even though it is not 
maximized. Any increase is sufficient to ensure that the convergence properties of the EM 
method apply here as well [3, 8]. The covariance matrix estimators obtained in this way 
using (80) are therefore GEM estimators rather than EM estimators. 

Let {xok,x±h,---,XTk} denote the updated state estimates obtained as in the previous 
section for current estimates of mixing proportions, states, and covariances. The notation 
of the total squared error expression (68) must be adjusted slightly for the present context; 
that is, N(r;Htkx'tk,Rth) must be replaced by N(r;Htkx'tk,R'tk), as is easily seen from the 
derivation of Qkx, and xtk must be replaced by xtk because of the nested maximization 
(80). Taking the gradient of the adjusted total error expression with respect to Rtk using 
the general matrix gradient identity 

VE logN(x; fi, E) = -E-1 + E"1 (x - ß){x - ß)*Z -l 
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and solving for Rtk gives the estimator 

Rtk  = 
Efei [mk) fBt® N(T'> H*kx'tk, R'tk) dr R ■tu 

£*=i [p^IBe(t)N(T^Htk^Rtk) dr\ 

where the cell-level measurement covariance matrix contributions are defined by 

!BAt) N^ H*xtk, R'k) (r - Htkxtk) (r - Htkxtky dr 

(81) 

RtU = 
lBdt)N^HtkX'^Rtk)dr 

The estimator (81) cannot be full rank unless 5 > dim(C). Also, numerical considerations 
analogous to those mentioned at the end of the previous subsection apply to computing RtM. 
Further details are not pursued here. 

If all the measurement covariances are required to be the same, so that Rtk = R for all 
t, then the same procedure gives 

Rk = 
D<=i7rtfc Hu=\   PTDö) lB,(t)N^HtkXtk^R'tk) dr R ■tu 

Y?t=i<k Eli lpfkr)JBe(t)
N(T'>HtkXtk,R'k) dr 

(82) 

The estimator (82) cannot be full rank unless ST > dim(C). Both estimators (81) and (82) 
are convex (discrete-continuous) combinations of outer products of innovations. 

A similar method leads to target covariance matrix estimates. Taking the gradient of the 
total squared error (68) with respect to Qt-i,k and solving for Qt-i,k gives 

Qt-ijc = {xtk - i't-i.fcXt-i,*) (ßtk ~ Ft-i,kXt-ijiY (83) 

The estimator (83) is full rank only if dim(artt) = 1. When dim(zifc) > 1, taking the gradient 
of the total squared error under the additional constraints Qtk = Qk for all t gives 

t=l PÖÖ) \Xt* - *t-l,kXt-l,k) {Xtk - *t-l,kXt-l,k) 
Qk = * VT   mn • (84) 

2^t=ip-{x^ 

The estimator (84) cannot be full rank unless T > dimfo*). 

Additional constraints can be imposed on the problem if desired. For example, if the ifc-th 
target and measurement processes are stationary, then Rtk = R and Qtk = Q for all t. Linear 
constraints such as this lead to estimators that average over both I and t, so the resulting 
covariance estimators are more likely to have full rank. Alternatively, Wishart matrix prior 
PDFs can be utilized to guarantee that the estimated covariance matrices have full rank [10]. 
Such variations are application dependent and are not pursued here. 

26 



/ 
JB, 

7.    STATEMENT OF THE HISTOGRAM-PMHT ALGORITHM 

Many application-specific variants of the histogram-PMHT algorithm are easily derived 
from the above analysis. The assumptions of the specific algorithm given in this section 
are now reiterated. The sensor cells C are known and of fixed size and shape. The 
numbers {L(1),...,L(T)} of displayed cells are given, and the displayed cell list B(t) = 
{Bi(t), ...,BL(T){t)} is known for t = 1, ...,T. The measurement vectors {Zu ...,ZT} are in 
the form specified by equation (1). 

The target covariance matrices are stationary; that is, only one covariance matrix is esti- 
mated per target. The measurement covariance matrices are non-stationary, so a covariance 
matrix is estimated for each target at each time. The T background (noise) PDFs 

{G0(T;X10), ..., GO(T;XTO)} 

and their corresponding parameters {xi0,x2o, •••, £ro} are given. For computational efficiency, 
the numerical values of the quantities {\\Zi\\,..., \\ZT\\} and the integrals 

G0(r; xto) dr,    £ = 1,...,S and t = l,...,T, 

are precomputed. 

All target models are assumed to be observable; that is, a unique point estimate exists for 
each target state given the measured data. This assumption may impose mild restrictions in 
some applications. In some kinematic applications, for example, measurements of position 
are used to estimate a target state vector comprising both position and velocity. In this 
case, it is clearly necessary to have at least two scans in the batch, unless an informative a 
priori state density is available. For the single batch histogram-PMHT algorithm, a priori 
information is absent, so in this case it is required that T > 2. In contrast, a single scan can 
be used in the recursive histogram-PMHT batch algorithm because it uses an informative 
a priori density obtained via earlier measured data; thus, the single batch algorithm is 
essentially an initialization procedure for the recursive batch algorithm. General conditions 
for observability of the target state are not pursued further here. 

7.1    SINGLE BATCH HISTOGRAM-PMHT ALGORITHM 

7.1.1    Initialization 

Initialize mixing proportions {jf\k'} so that n^  > 0 and 

?(oO)+^o) + ...+?(2 = l        for t = l,...,T. 

For target models k = 1,..., M, initialize 
xxx r~(o) ~(0)       ~(0)-> 

target state sequence: \xofc> xifc > •■•> xTkfi 
measurement covariance sequence:     {!§,■, R2k , • • •, ivj^}, 

—(0) target covariance: Qk . 

27 



The initial covariance matrices are assumed to be valid covariance matrices; that is, they 
must be symmetric and positive-definite. 

7.1.2    Iteration 

Let i denote the histogram-PMHT iteration index. For i = 0,1,2,..., compute the fol- 
lowing 13 quantities: 

1. Target cell probabilities for t = 1,..., T;£=l,..., S; and k = 0,l,...,M: 

tu 
JB,mG°(r; xto) dr, 
/B,W * fc #* 3«   Ä«) dr, 

k = 0, 

k = l, ,M. 

2. Total cell probabilities for t = 1,..., T and £ = 1,..., S 

M 

rti        ~ 2_j   ntk rtU    ■ 
k=0 

3. Total sensor probabilities for t = 1,..., T : 

L(t) 

P(i+i) _ y^ p(<+i) 
« 

4. Expected measurements for t = 1,..., T and £ = 1,...,S 

zte, 

\\z,\ H *+l) /p(*+l) 
1 < -£ < L(t) 

£(*) + 1 < ^ < 5. 

5. Cell-level centroids for t = 1,..., T;i=l,..., 5; and k = 1,..., M : 

ztu = Wn) I        rN{r;Htkx^,RfA  dr, 
tu   JBi(t) 

6. Synthetic measurements for t = 1,..., T and A; = 1,..., M 

T"5 

'tjfc 

-(i+l) /p(*+l)  /p(i+l) 6tf ) 
ztU 

v5    Mi+1) /Vi+1) /p^+^V 

(85) 

(86) 

7. Synthetic measurement covariance matrices for t = 1,..., T and fc = 1,..., M : 

K A! tfc 

ä(0 V5     7(i+1) fp(i+1) /P^1) 
ti r 
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8. Synthetic target covariance matrices for t = 0,1,..., T - 1 and k = 1,..., M 

9. Estimated mixing proportions for t — 1,..., T and fc = 0,l,...,M: 

ntk 

t+1) 
tkl 'Ptn) 

^M     ~(i)   V5     -(i+1) /pCi- 
l^k'-o ntk' z_^=i ^te     yrtk'. 

+i) 
'^+1)) 

10. Estimated target states for t = 0,1, ...,T and fc = 1,..., M, using (for computational 
efficiency) a recursive Kaiman smoothing filter, which comprises a forward filter initialized 
at time 0 with 

and the dummy covariance matrix 

and given, for t — 0,1, ...,T - 1, by the recursions 

0, 

(87) 

(88) 

t+llt 
>(*+!)/ (*) = Fttp^r;(*)^ + Q« (*+i) 

mW1 

and a backward filter initialized at time T with 
-(i+i) = ~<i+i)m 

and given, for t = T - 1,..., 2,1, by the recursion 

sT^sär'w + 4W>(*)^ (^5?(*))_1{sSa - JfciCw} 
and, for t = 0, by 

ä(<+I) _ 
x0fc       — ^Ofc (^QofcJ       -Pbfc -Fofc (^OfcJ       £ 

<t+l) 
lit      • 

(89) 

(90) 

11.   Cell-level measurement covariance contributions for t = 1,...,T; £ = 1, ...,5; and 
Jfe = l,...,M: 

S(*+i) _ 
Ist{^(r; ff*2« Ä<?) (r-Htkxf^){r-Htkx^y dr 
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12. Estimated measurement covariance matrices for t = 1, ...,T and k = 1,..., M 

a.['SH,(j&7/ffH))]e(i+,) 

■"-tfc     — 
vs   M+1) /Vm) /p(»+i)V 

13. Estimated target covariance matrices for k = 1,..., M : 

This completes one step of the histogram-PMHT algorithm for a single batch. 

The only theoretically justified convergence tests are based on the rate of increase in the 
overall likelihood function. In practice, effective tests can be based on the rate of change 
of the target state estimates or on other suitable grounds. Another strategy that may 
also be effective in practice is simply to compute a fixed number of iterations and terminate. 
However, useful alternative convergence tests are application-dependent and are not pursued 
here. 

During algorithm development, it is highly recommended that the overall likelihood func- 
tion be calculated and its monotonic increase verified. Monotonicity is an acid test for val- 
idating both software implementations and numerical dynamic range handling procedures; 
the availability of such a simple test is fortunate considering the detailed structure of the 
histogram-PMHT algorithm. 

Upon convergence at, say, EM iteration i*, the last estimates obtained are renamed as 
follows, for 1 < k < M: 

xt\r(k) = xfp iovO<t<T, 

*t\T(k) = 4P forl<t<T, (91) 

Rt\T(k) = R?P forl<i<T, 

Qt\T(k) = QP ioiO<t<T-l. 

The traditional notation of smoothing filters is adopted here to clarify the relationships 
between the various parameter estimates in the recursive batch application. 

This completes the statement of the histogram-PMHT algorithm for a single batch using 
all the available data. 

Error covariance matrices for the state estimates xt\r(k) are not required by the single 
batch histogram-PMHT algorithm, but they are needed in the recursive batch algorithm. 
The error covariance matrix of £r|r(&) is given by 

ET]T(k) = P^(k). 
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For t = T-l,..., 1,0, the error covariance matrix of xt\T{k) is given by the backward recursion 

x   £m|T(fc) -P£?|t(*)] (P^y'F^Pipik), (92) 

where the quantities Pfp(k) and P^t(k) are the intermediate covariance matrices computed 
in step 10 above, after algorithm convergence. 

7.2    RECURSIVE BATCH ALGORITHM 

It is assumed in this section that data vectors Zt are available for scans at times t = 
1,2,3,..., and that scans are processed by the histogram-PMHT algorithm using a sliding 
batch of maximum length T. In the startup phase when current time t is such that 1 < t < T, 
the histogram-PMHT algorithm is applied to all available scans. The batch length thus grows 
steadily and is always equal to t. The batch is full for the first time when t = T. Thereafter, 
the batch is refreshed by adjoining the newest scan and deleting the oldest scan, thereby 
keeping batch length T fixed. 

Let t > 1 denote the time of the most recent scan. During the startup phase, the 
histogram-PMHT algorithm described in the preceding section is used without modification 
for the current batch length. Using the notation in (91) and (92), the histogram-PMHT 
outputs at time t are now denoted as 

\xnlt(k), Sn|t(A0, 5fn|t(fc), Rn\t(k), Qn\t{k)}    for n = 0,l,...,t 

This completes the startup phase. 

When current time t > T, it is necessary to remove the oldest data scan from the batch. 
The current batch comprises data from the most recent T scans, 

{Zt-T+ly   Zt-T+2,   ■■-,   Zt-l,   Zt} . 

The set of all deleted data vectors is 

{Zl,Z2,--,Zt-T} ■ 

Let pSt_T(Xt-T I Ni,..., Nt-T) denote the posterior PDF of Xt-T conditioned on the quantized 
vectors Ni,..., Nt-r that correspond to the deleted data vectors {Zx, Z2, ■■■, Zt-T] ■ Adjusting 
the notation in the obvious way to accommodate the sliding batch gives the modified data- 
dependent a priori density as 

[pSt.r(xt_r|isrll...>Nt.r)]^
s+w?-^   n   [Ps^-ÄXn\Xn^)]N^+N^.      (93) 
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The only significant difference between (29) and (93) is that the exponent of the leading term 
in (93) is changed because the data at scan t - T are generated in the manner described in 
section 3.3. The auxiliary function Qi(t) is found by taking the limit as h2 -> 0 (cf. Section 
4.4). The result is 

\\Zt-T\\ 

A     HZ" 
E p(X'\   l0S^n|=n-l {Xn\Xn^) 

,=t-T+l       ^    n> n=t-T+l 

M t S        _ 

+ E     E     EöTITT/       fk(r\X'n) log fk(r\Xn) dr. (94) 
fc=0   n=n-T+l   1=1 riK^n) JBe{n) 

The primary difference between (94) and (56) is the additional term contributed at time 
t - T. The M state estimates {xt_T\t_T(k)} are fixed and not subject to further update, so 
it is assumed that 

M 

Pzt„T(Xt_T | Nu ..., Nt_T) = 11 N (xt_T,k; xt_Tlt_T(k), %.Tlt_T(k)) . (95) 
k=i ' 

Substituting the approximation (95) gives the modified form of the total squared error (68) 
of the fc-th target. The additional term at time * - T gives an additional term in the upper 
left-hand corner block of the matrix of the necessary equations, denoted by TkX(k) = bk in 
section 6.2. The equivalent Kaiman smoothing filter (cf. equation (75)) now has a diffuse a 
priori density, as is seen from the equivalent likelihood expression 

N (xt-.T,k; xt-T\t-T(k), ^-|j%.r|i_r(fc)) 
t 

X       II      \N {Xn,kl ^n-l,fcZn-l,fc, Qn-l,k)   N (znk; HnkXnk, B^) } . 
n=t-T+l V J J 

Further details are straightforward and have been omitted. 

For t > T, after the batch is refreshed, the histogram-PMHT algorithm described in 
section 7.1 is applied to the data set 

{Zt-T+l, Zt-T+2, •••; Zt-i, Zt} 

to compute the parameter estimates. However, the initializations (87) and (88) of the Kaiman 
smoothing filter are changed to 

yio\o1)(k) = ^t-T\t-T(k) (96) 
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and the covariance matrix 

Co = iS£-T|M'(*)' (97) 

respectively, where the probability pffi is defined as in equation (86) using the current 

algorithm iterates xl%{t(k) and R^T{t(k). Also, the backward recursion (89) now runs from 
t = T-ltot = 0 because the special step (90) is not required when the a priori density is 
not diffuse. 

The outputs of the histogram-PMHT algorithm, including the error covariance matrices 
of the state estimates, are denoted in the smoothing filter notation as 

xn]t(k) for t-T<n<t, 
Zn\t(k) fori-T <n<t, 
Tfn\t{k) fott-T + l<n<t, 
Rn^k) fort-T + l<n<t, 
Qn[t(k) fort-T<n<t-l. 

This completes the statement of the recursive form of the histogram-PMHT algorithm. 
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8.    VARIATIONS ON THE THEME 

Independent target models have been assumed throughout the report to allow clear focus 
on the central ideas and to simplify the analysis; however, this assumption can be modified 
significantly without changing either the fundamental theoretical framework or the structure 
of the histogram-PMHT algorithm. For example, the assumption of independent targets is 
incorrect when the targets are models of frequency lines and these lines are known to be 
harmonically related. It is straightforward in this case to use the functional dependencies 
between the lines as linear equality constraints on the line parameters; that is, the means and 
covariances of harmonically related lines satisfy specified linear constraints (transformations). 
Linear equality constraints are readily incorporated into the M-step of the histogram-PMHT 
algorithm, as indicated in section 6. For further details of this particular application, see 
Luginbuhl [2, chapter 5]. 

The basic strategy for modeling dependencies between targets can be generalized signifi- 
cantly and adapted to other applications. Thus, known functional relationships arising from 
physical or other considerations in the application can be modeled as parametric constraints 
on the M-step optimization problem. The difficulty of solving the M-step will depend heavily 
on the mathematical character of the constraints and will, in general, require the use of nu- 
merical procedures. The practicality of the resulting algorithm will be application-dependent 
in general. 

A single Gaussian density may be inadequate in some applications to capture the cell-to- 
cell variation of one or more of the targets on the display. Loosely speaking, such a target may 
be best described as a "blob." Such problems may arise, for example, when the underlying 
target signal model is poorly understood and not well matched to the signal processor whose 
outputs feed the sensor display. For such applications, it is probably worthwhile to use a 
mixture-of-mixtures density (see Streit and Luginbuhl [11]) to model the target's cell-to-cell 
variation. Specifically, if the k-th target is a blob, then the mixture model density (30) is such 
that component Gk{r\Xt) is itself modeled as a Gaussian mixture whose parameters must be 
estimated. The derivation of the histogram-PMHT algorithm for this case requires adding a 
fourth stage of missing data, namely, the assignment of measured data to components within 
the blob mixture. While such an algorithm for blob-like targets is easily derived using the 
methods presented in this report, it is left for future work. 
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9.    SUMMARY 

The histogram-PMHT algorithm is a multi-target tracking algorithm designed to be 
used with the entire sensor output data stream. It completely avoids the thresholding losses 
incurred by the traditional methods of generating point measurements by peak picking, three- 
point interpolation, etc. The theoretical development of the histogram-PMHT algorithm 
presented in this report has a mathematically sound foundation based on the framework of 
PMHT. 

The negative multinomial density is potentially very useful in applications in which data 
compression and thresholding procedures result in truncated sensor measurements for some 
sensor cells. In other applications, limited resource availability may require collecting mea- 
surements in only a subset of cells. The negative multinomial model compensates for missing 
measured data by using an expectation operator to extrapolate the given data into trun- 
cated cells; hence, it may reduce parameter estimation bias and other undesirable edge effects 
induced by cell truncation. 
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